汶川高考可以复读多久,数学中心一年多少钱,课堂紧跟老师,认真听每一节课,记好课堂笔记,有些学生喜欢自己课后自学,课堂不爱听讲,这是极错误的,因为老师对于高考的了解和对知识的掌握,远远胜过我们自学,紧跟老师是打好基础最关键的一步。
高考数学难度
2023年浙江的数学试题选择题难度不大,填空题继续采用多空设问的形式,在其中穿插数学文化知识等考点,紧扣考纲。今年大题的考查延续了去年改革之后的模式,数列的题目难度降低,导数与函数作为压轴题,也没有让浙江的学生缓一口气,难度依然很高。
给下一届考生的建议:浙江的数学难度大家有目共睹,所以浙江的考生要想考的好的学校就必须提高自己的数学思维能力,计算能力是基本,对于比较困难的题目也坚决不能放弃。研究往年的高考题目是必不可少的复习过程,大家要学会从过去的试卷中总结题型技巧,掌握思想方法。
浙江高考语文英语数学从2023年开始不再自主命题,而改用全国卷,这算是一个重大的改革了。浙江重回全国卷,是明智的。考试难度下降,让优秀的学生学有余力,有更多的时间根据自己的兴趣进行探索性的学习,培养真正的研究型人才。
高考数学怎么蒙题
1、数学与图形有关的选择题。如果不会做,就直接选特值。其次图形题也可以直接通过测量得出答案,高考的题型设置都是非常规范的,用直尺、量角器量一量通过比例得出答案,这个答案的准确率还是比较高的!
2、填空题不会做时,就写一个自认为最可能的,实在没没办法就填1或0。
注意!!!以下基本上都是靠感觉蒙题,不到万不得已,不建议使用。(1)选择题
数学第一题不会是A,最后一题不会是A,总体上BD较多,A较少;题目数字简单,答案选项一定复杂(反之亦然);图形有关的选择题,直接选特值;以上都不适用的时候,BC中间扔一下笔,笔尖左边B右边C
(2)填空题
填空题3分钟不会就跳,写一个自认为最可能的;实在没有任何思路就填1或0。
(3)大题
大题不会,就把自己臆测的结论推导一遍,抓紧一切求分绝不空白;步骤无论对错,一定要写明确。各位都知道,阅卷老师是按步骤给分的!
如果有两种自己不清楚的思路,就都写上,阅卷老师一般会按正确的那些给分。
2023年高考数学万能答题模板
选择填空题
1.易错点归纳
九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2.答题方法
选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。
填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
解答题
专题一、三角变换与三角函数的性质问题
1.解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解。
2.构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题
1.解题路线图
①化简变形;②用余弦定理转化为边的关系;③变形证明。
①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题
1.解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2.构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
专题四、利用空间向量求角问题
1.解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2.构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
专题五、圆锥曲线中的范围问题
1.解题路线图
①设方程。
②解系数。
③得结论。
2.构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
专题六、解析几何中的探索性问题
1.解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)。
②将上面的假设代入已知条件求解。
③得出结论。
2.构建答题模板
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
专题七、离散型随机变量的均值与方差
1.解题路线图
(1)①标记事件;②对事件分解;③计算概率。
(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
2.构建答题模板
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的事件。
③定型:确定事件的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方差公式求解其值。
专题八、函数的单调性、极值、最值问题
1.解题路线图
(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。
(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。
2.构建答题模板
①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)。
②解方程:解f′(x)=0,得方程的根。
③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。
④得结论:从表格观察f(x)的单调性、极值、最值等。
⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步。