高考数学压轴题解题思想,最近很多人在关注高考数学压轴题解题思想,今天就给大家分享一下,希望对大家有帮助。
高考数学压轴题解题诀窍
诀窍1.重视审题
你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时,步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”,步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。
然后在“新条件”与“新结论”之间再寻找关系。一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!
诀窍2.细心演算
对于一些高考压轴题,如果题意难以理解,解题思路不明,可以先考虑一些特殊情况或简单情况,也就是“以退求进”。
诀窍3.但求突破
高考数学压轴题,像一块硬骨头,要敢于“啃”,不要惧怕。压轴题往往有两问或者三问,第一问通常比较容易,要做好第一问,同时也为做好后面的问题打下基础。对后面的问题,即使不能够写出完整的解答过程,也要大胆的去做,能做多少是多少,要把自己的想法写出来。
高考数学压轴题解题技巧
技巧1.注重方程与函数思想
利用方程解决几何计算已经不能算难题了,建立变量间的函数关系,也是经常会碰到的,常见的建立函数关系的方法有比例线段,勾股定理,三角比,面积公式等
技巧2.注重分类讨论思想
这个大家碰的多了,就不多讲了,常见于动点问题,找等腰,找相似,找直角三角形之类的。
技巧3.注重转化与化归思想
就是把一个问题转化为另一个问题,比如把四边形问题转化为三角形问题,还有压轴题中时有出现的找等腰三角形,有时可以转化为找一个和它相似的三角形也是等腰三角形的问题等等,代数中用的也很多,比如无理方程有理化,分式方程整式化等等
技巧4.注重数形结合思想
高中用的较多的是用几何问题去解决直角坐标系中的函数问题,对于高中生,尽可能从图形着手去解决,比如求点的坐标,可以通过往坐标轴作垂线,把它转化为求线段的长,再结合基本的相似全等三角比解决,尽可能避免用两点间距离公式列方程组,比较典型的是08年中考,倒数第2题,用解析法的同学列出一个极其复杂的方程后,无法继续求解下去了,而用几何方法,结合相似三角比可以轻易解决。另一个典型的例子是09二模倒数第2题,用几何法3分钟解决,而用代数法30分钟也未必能解决。所以遇到此类题目,切记先用几何方法,实在做不出再用解析法。
高考数学压轴题六大解题技巧
一、三角函数题
注意归一公式、诱导公式的正确性 {转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!}。
二、数列题
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。)利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8.注意条件概率公式;9.注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3.战术上整体思路要保7分,争9分,想12分。
六、导数/极值/最值/不等式恒成立题
1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);2.注意最后一问有应用前面结论的意识;3.注意分论讨论的思想;4.不等式问题有构造函数的意识;5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);6.整体思路上保6分,争10分,想14分。
高考数学压轴题解题思想
高考数学压轴题解题思想一:函数与方程思想
高中数学函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。
高考数学解压轴题思想二:数形结合思想
高考数学解压轴题思想三:特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
高考数学解压轴题思想四:极限思想解题步骤
极限思想解决问题的一般步骤为:
(1)对于所求的未知量,先设法构思一个与它有关的变量;
(2)确认这变量通过无限过程的结果就是所求的未知量;
(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
高考数学解压轴题思想五:分类讨论思想
我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。
高考物理压轴题解题方法
一、练习基础题答题速度,没有什么捷径,除非你是天才,多练而已。为真正的压轴题留出足够找到灵感和解决它的时间。
二、适当接触奥物、大学物理,拓宽自己的视野。你应该有这样一种感觉,现在的初中物理对你来讲已经和幼儿园的看图说话差不多了,高中物理道理是一样的。但是也不要投入太多的精力,物理学博大精深,三年时间,还有其他的课程,你根本没有那么多时间来研究透彻。
三、思想很重要,在平时训练中要注意总结,这类题目往往要跳出常规的方法或者视角来找灵感。在解决这类题目的时候如果找不到常规方法的时候,尝试跳出来。
高考数学压轴题的解题技巧
通过一个既有的模型,数学结论,物理实验,物理现象,通过列举简化,或者给出相关信息,来达到可以用教材知识思考的程度,有时候干脆直接出成理想实验题目或者资料类题目,这类题目往往突出的是细节,因为元素众多。
解题过程中卡在某一过渡环节上是常见的,这时可以先承认中间结论,往后推,看能否得到结论。若题目有两问,第(1)问想不出来,可把第(1)问当作“已知”,先做第(2)问,跳一步解答。对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证。
“以退求进”是一个重要的解题策略,对于一个较一般的问题,如果一时不能解决所提出的问题,那么可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变量退到常量,从较强的结论退到较弱的结论。总之,退到一个能够解决的问题,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展。顺向推有困难就逆推,直接证有困难就反证。
高考数学压轴题解题思路
1、复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。
2、一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。
高考数学压轴题解题思路
1. 复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。
3. 一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。
另外,还有一些细节要注意,三角比要善于运用,只要有直角就可能用上它,从简化运算的角度来看,三角比优于比例式优于勾股定理,中考命题不会设置太多的计算障碍,如果遇上繁难运算要及时回头,避免钻牛角尖。
如果遇到找相似的三角形,要切记先看角,再算边。遇上找等腰三角形同样也是先看角,再看底边上的高(用三线合一),最后才是边。这都是能大大简化运算的。
小编给大家的高考数学压轴题解题思想,是否还是解除了一些内心疑惑和苦恼呢,其实高考数学压轴题解题思想很多东西都是相通的,就看你怎么去选择和看待。